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1. Introduction and summary

Recently Schnabl found an analytic non trivial solution [1] to open bosonic cubic string

field theory [2]. This solution is universal [3], and therefore it was written in a universal

way, independent of the CFT of the matter sector. The only requirement from the matter

sector is that it should have central charge 26 to cancel the central charge of the b, c ghost

system.

Yet, many applications and generalizations of the solution do depend on the matter

sector. Foremost, the proof of Sen’s first conjecture, according to which the height of

the potential equals the tension of a D25-brane, obviously assumes that the matter sector

consists of 26 scalars with Neumann boundary conditions. Yet, for this calculation, the

dependence on the matter sector simply amounts to integrating over the zero-modes, which

gives the needed 26 dimensional volume factor. Therefore, Schnabl was able to prove Sen’s

first conjecture within the universal basis (up to some subtleties that were clarified in [4, 5]).

Other generalizations, like finding lump solutions [6 – 8] or studying the close string

spectrum around the solution, should also depend on the matter sector. Schnabl’s solution

may also have relevance to other, background dependent constructions, such as the evalu-

ation of (off-shell) string amplitudes [9, 10]. All this calls for a study of the scalar field in

Schnabl’s formulation.
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To solve the equations of motion of string field theory, Schnabl made a specific choice

of gauge and coordinates. The zeroth order Virasoro generator in these coordinates is

L0 = tan ◦L0 =

∮

dz̃

2πi
z̃Tz̃z̃(z̃) = L0 −

∞
∑

n=1

2(−1)n

4n2 − 1
L2n . (1.1)

This operator and its conjugate play a prominent role in the solution. The simplest way

to write this operator for a scalar field would be to use oscillators in the same coordinate

system,

L0 =
α̃2

0

2
+

∞
∑

n=1

α̃−nα̃n , α̃n = tan ◦αn =

∮

dz̃

2πi
z̃n∂X(z̃) . (1.2)

The downside of this approach is that the BPZ conjugate operations become complicated.

For example, the relation between α̃
†
n and α̃n is no longer simple. Also, the vacuum state

annihilated to the right by all α̃n>0 remains the same as can be seen from the relation

Utan |0〉 = |0〉. The conjugate state, the one annihilated to the left by all α̃n<0, on the

other hand, is the sliver state 〈0|U−1
tan = 〈S|. This can also be seen from the generalization

of the squeezed state expression of [11] for the new operators,

〈f | = 〈0| exp

(

1

2
α̃nsnmα̃m

)

, snm =
1

nm

∮

dz

2πi

dw

2πi
z−nw−m f ′(z)f ′(w)

sin(f(z) − f(w))2
. (1.3)

Here the trivial map f(z) = z gives the sliver.

Another way to avoid using an explicit expression for L0 is to switch the solution to

the Siegel gauge. Since L0 = U−1
tanL0Utan, one could naively define,

L
‡
0 ≡ U−1

tanL†
0Utan . (1.4)

Then, this operator will satisfy the desired algebra [L0, L
‡
0] = L0 + L

‡
0 by construction and

one could use these operators to build a solution equivalent to Schnabl’s solution in the

Siegel gauge. However, trying to calculate L
‡
0 leads to diverging results, and we did not

find a way to make sense out of this operator.

An alternative route for simplifying Schnabl’s operators stems from their relations to

wedge states [12 – 15]. That Schnabl’s solution is related to wedge states is clear, both

because they are explicitly used in the construction of the solution and because his gauge

choice is implemented via a conformal transformation which is the inverse of the sliver

transformation. Wedge states are especially easy to deal with in the continuous basis [16],

as they are squeezed states whose defining matrix is diagonal in this basis. In fact, they

are the only surface states with this property [17, 18].

The wedge states and the conformal transformation are both generated by the op-

erators L0,L†
0. Thus, one would expect that these operators would have a nice form in

the continuous basis. To be more concrete, we recall that the wedge state |n〉 can be

represented as,

|n〉 = elog( 2

n
)L†

0 |0〉 , (1.5)

– 2 –



J
H
E
P
1
0
(
2
0
0
6
)
0
6
7

and also as,

|n〉 = e

(

−n−2

2
(L0+L

†
0
)
)

|0〉 . (1.6)

On the other hand, this should also be equal to [13, 16],

|n〉 = e
R ∞
0

dκ Tn(κ)a†
κa†

−κ |0〉 , (1.7)

where

Tn(κ) =
e

κπ

2
(n−1) − e

κπ

2

1 − e
κπ

2
n

= −sinh
(

κπ
4 (n − 2)

)

sinh
(

κπn
4

) . (1.8)

Thus, we expect a simple representation for these operators in the continuous basis.

Yet another hint for the natural description of these operators in the continuous basis

comes from the commutation relation

[L0 + L†
0,K1] = 0 . (1.9)

This relation implies that the bi-linear term of L0 + L†
0 is diagonal and suggests that the

quadratic terms are simple.

Indeed we find,

L0 + L†
0 =

π

2

∫ ∞

−∞

dκ

N (κ)

(

2 cosh
(κπ

2

)

a†κaκ + a†κa
†
−κ + aκa−κ

)

. (1.10)

Actually, it is very reassuring that we get such a simple and well behaved result considering

the singular behaviour of the Virasoro operators in the continuous basis [19 – 21]. It seems

that all the singularities conspire to cancel for this specific combination. The L0 operator

itself is slightly less simple in the sense that in addition to the δ-function contributions it

also has δ′ contributions,

L0 =

∫ ∞

−∞

dκdκ′
((κπ

4
coth

(κπ

2

)

δ(κ − κ′) +
κ + κ′

2
δ′(κ − κ′)

)

a†κaκ′ +
πδ(κ + κ′)

2N (κ)
aκaκ′

)

.

(1.11)

These results are derived in section 2. We also derive in this section the non-zero

momentum sector and bosonized ghost form of L0,L†
0. In section 3 we verify that our

expressions indeed satisfy the commutation relation,

[L0,L†
0] =L0 + L†

0 . (1.12)

We find that the commutation relation holds, up to regularization subtleties. When the

central charge is not zero there is an additional infinite constant on the r.h.s of (1.12) [15].

These infinities cancel between the matter and the ghost sector, but in the oscillator reg-

ularization scheme we are left with a residual finite constant. This is reminiscent of the

description of wedge states and string vertices in the continuous basis [22, 20, 23 – 25].

Section 4 is devoted to relating the different wedge state representations (1.5), (1.6), (1.7).

We conclude and suggest future directions in section 5.
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2. The L0,L†
0 operators in the continuous basis

The continuous basis is the basis that diagonalizes K1 [16]. For a scalar field the creation

and annihilation operators transform as

a†n =

∫ ∞

−∞

dκ
vκ
n

√

N (κ)
a†κ , an =

∫ ∞

−∞

dκ
vκ
n

√

N (κ)
aκ . (2.1)

The transformation matrix vκ
n is defined by the generating function,

fκ(z) =
1 − e−κ tan−1 z

κ
≡

∞
∑

n=1

vκ
n√
n

zn , (2.2)

and the normalization factor turns out to be [26]

N (κ) =
2

κ
sinh

(κπ

2

)

. (2.3)

The new creation and annihilation operators obey the commutation relation

[aκ, a
†
κ′ ] = ρ(κ, κ′) , (2.4)

where ρ(κ, κ′) = δ(κ − κ′) is the spectral density. For κ = κ′ there are also finite con-

tributions which can be relevant. We therefore use level truncation to regularize the δ(0)

contribution,

ρ(κ) ≡ ρ(κ, κ) = lim
`→∞

1

2π

`/2
∑

n=1

1

n
+

4 log(2) − 2γ − Ψ( iκ
2 ) − Ψ(− iκ

2 )

4π
. (2.5)

2.1 A direct evaluation of L0,L†
0

Virasoro generators cannot be represented in the continuous basis by functions, or even by

usual delta functions [19]. This difficulty was addressed in [20, 21], where it was shown

that the Virasoro generators can be represented by more general distributions, i.e. delta

functions with complex arguments [20, 27]. The positive Virasoro modes are given by,

Lm =
1

2

∫ ∞

−∞

dκ dκ′ aκaκ′

√

N (κ)N (κ′)
hκ,κ′

m +

∫ ∞

−∞

dκdκ′a
†
κaκ′

√

N (κ)N (κ′)
gκ,κ′

m , (2.6)

where we refer to the two terms as quadratic and bi-linear, respectively. The coefficients

of these terms, g
κ,κ′

m , h
κ,κ′

m are,

gκ,κ′

m = sinh
(κ′π

2

)

( qm(κ−)

sinh
(κ−π

2

)+

imδ(κ−−2i) − (−i)mδ(κ−+2i)

2i
− m sin

(mπ

2

)

δ(κ−)
)

, (2.7)

hκ,κ′

m =qm(κ+) , (2.8)
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where,

κ± ≡ κ′ ± κ , (2.9)

and the coefficients depend on,

qm(κ) =
1

2πi

∮

e−κ tan−1(z)dz

zm−1(1 + z2)2
. (2.10)

The negative Virasoro generators are simply given by conjugation.

We can now calculate L0 (1.1). First, we note that all the delta function contributions

cancel between the L0 part and the sum. Thus, we are only left with the evaluation of,

Q(κ) ≡ −2

∞
∑

n=1

(−1)n

4n2 − 1
q2n(κ) . (2.11)

This would give both the quadratic and the bi-linear coefficient, since they are both simple

functions of Q(κ±).

We first observe that Q(κ) is singular for κ = 0 since, (−1)nq2n(0) = −n, and so

the sum behaves asymptotically as the harmonic sum. On the other hand, for κ 6= 0, an

oscillatory behaviour is superposed on the linear divergence of the coefficients and so we

would expect that the series would converge. The above suggests a component in Q(κ)

which is proportional to δ(κ). This would also fit our intuition, according to which L0,L†
0

should have a simple form in the continuous basis.

We first use the symmetry of (2.10) for even integers to replace the exponent by a cosh

and then integrate twice by parts to get,

q2n =
2n(2n − 1)

2πi

∮

κ cosh
(

κ tan−1(z)
)

+ 2z sinh
(

κ tan−1(z)
)

κ (κ2 + 4) z2n+1
dz. (2.12)

In order to perform the sum we have to change the integration contour. We use the results

for these integrals from [28, 20], and again integrate one of the summands by parts to get,

q2n =
2(−1)n+1n(4n2 − 1) sinh

(

κπ
2

)

κ(κ2 + 4)π

∫ ∞

−∞

cos(κu)

cosh4(u)
tanh2n−2(u)du . (2.13)

Plugging this result into (2.11) we get,

Q(κ) =
4 sinh

(

κπ
2

)

πκ (κ2 + 4)

∞
∑

n=1

n

∫ ∞

−∞

cos(κu)

cosh4(u)
tanh2n−2(u)du . (2.14)

We can now interchange the order of summation and integration and use

∞
∑

n=1

n tanh2n−2(u) = cosh4(u) , (2.15)

to get

Q(κ) =
4 sinh

(

κπ
2

)

πκ (κ2 + 4)

∫ ∞

−∞

cos(κu)du =
4 sinh

(

κπ
2

)

πκ (κ2 + 4)
2πδ(κ) = πδ(κ) . (2.16)
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Substituting this result into the expression for h (2.8) we get that the term in L0 which

is quadratic in annihilation operators is,

L0,quad = π

∫ ∞

0

aκa−κ

N (κ)
dκ . (2.17)

The term bilinear in creation and annihilation operators is more problematic. Here we

formally find,

L0,bi-lin = 2

∫ ∞

−∞

sinh
(

κ′π
2

)

√

N (κ)N (κ′)

δ(κ − κ′)

κ′ − κ
a†κaκ′dκdκ′ . (2.18)

This expression contains a very singular distribution that does not make sense unless it

multiplies an expression with a zero at κ = κ′. We can, however, define it by a principal

part prescription. We would later justify this choice. Integration by part and some basic

manipulations give,

L0,bi-lin =

∫ ∞

−∞

(κπ

4
coth

(κπ

2

)

δ(κ − κ′) +
κ + κ′

2
δ′(κ − κ′)

)

a†κaκ′dκdκ′ . (2.19)

We see that the form of L0,bi-lin almost matches our naive expectation, except for the

appearance of a δ′(κ − κ′) term.

Finally, we want to write the sum, L0 +L†
0 explicitly. Its quadratic parts are just those

of L†
0 (L0) for the creation (annihilation) operators (2.17). For the bi-linear part, we have

to sum two expressions. Here, the antisymmetric part cancels and so,

(L0 + L†
0)bi-lin =

∫ ∞

−∞

dκ
κπ

2
coth

(κπ

2

)

a†κaκ , (2.20)

which is diagonal as it should be.

2.2 An alternative (half-string) evaluation of L0 + L†
0

A useful representation of L0 + L†
0 is given in eq. (2.44,2.45) of [1],

L0 + L†
0 =

2

π
(K1 − 2KR

1 ) =
2

π
(−K1 − 2KL

1 ) , (2.21)

where,

K1 = L1 + L−1 , (2.22)

is the operator defining the continuous basis and K
L,R
1 are its left and right parts in

the half-string formulation. The operator K1 is trivially diagonal in the κ basis and the

transformation to half-string basis amounts to mixing ±κ [27, 29]. These facts imply the

block diagonal form of L0 + L†
0. We now want to evaluate it directly from (2.21).

The operator K1 is given in the κ basis by,

K1 = −
∫ ∞

−∞

dκκa†κaκ =

∫ ∞

0
dκκ

(

a
†
−κa−κ − a†κaκ

)

. (2.23)
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We follow here the conventions of [29] and define the transformation to the continuous

half-string basis by the Bogoliubov transformation,
(

al
κ

ar
κ

)

= W

(

a−κ

aκ

)

+ U

(

a
†
−κ

a
†
κ

)

. (2.24)

Here W,U can be any pair of matrices built from block diagonal rank-one projectors as

explained in [29]. For the sliver,

W =
1√

1 − e−κπ

(

1 0

0 1

)

, U =
e−

κπ

2√
1 − e−κπ

(

0 1

1 0

)

. (2.25)

Substituting the inverse transformation (W → W, U → −U) in the definition of K1, we

get its form in the (sliver) half-string basis,

Kh
1 =

∫ ∞

0
dκκ

(

al †
κ al

κ − a
r †
−κar

−κ

)

. (2.26)

The simple κ dependence is unique to the sliver basis. Other projectors would result in

more complicated expressions that would also contain bi-linear terms. The decoupling of

the left and right modes is of course general to all half string bases. Splitting now to left

and right part is obvious. The first term is K l
1 and the second is Kr

1 .

We can now use eq. (2.21) to calculate L0 + L†
0 in the half-string basis, and then

transform back to the κ basis to get the same result (1.10) we got in the previous subsection.

In this calculation we get an infinite constant from the normal ordering of the operators.

We study this constant later.

2.3 Non-zero momentum and the bosonized ghost sector

The operators L0,L†
0 contain also a term linear in the momentum that we still did not

calculate. This term would not contribute in the case of uniform tachyon condensation,

because p = 0 in this case. However, it may be of importance in studying generalizations

of Schnabl’s solution in the context of lump solutions. Moreover, it is also important for

describing the bosonized ghost sector.

The momentum dependent term in the matter sector is,1

δ1L
m
n =

√

|n|anp0 (n 6= 0) , δLm
0 =

1

2
p2
0 , (2.27)

which upon using (2.1) implies,

δ1Lm
0 =

1

2
p2
0 − 2p0

∫ ∞

−∞

dκ
(

∞
∑

n=1

(−1)n
√

2n vκ
2n

4n2 − 1

) aκ
√

N (κ)
. (2.28)

Complex conjugation gives δ1L†m
0 . In the bosonized ghost sector, p0 should be replaced

by the half-integer ghost number q0, giving δ1Lg
0. In this case there are also additional

contributions from the linear-dilaton character of the bosonized ghost,

δ2L
g
n =

Q

2
(n + 1)

√

|n|an (n 6= 0) , δ2L
g
0 =

Q

2
q0 , (2.29)

1We work in the 2α
′ = 1 conventions.
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where Q = −3. Thus, in addition to δ1Lg
0, δ1L† g

0 , which are complex conjugate to each

other, we have in the ghost sector also,

δ2Lg
0 = −3

2
q0 + 3

∫ ∞

−∞

dκ
(

∞
∑

n=1

(−1)n
√

2n vκ
2n

2n − 1

) aκ
√

N (κ)
, (2.30)

δ2L† g
0 = −3

2
q0 − 3

∫ ∞

−∞

dκ
(

∞
∑

n=1

(−1)n
√

2n vκ
2n

2n + 1

) a
†
κ

√

N (κ)
. (2.31)

These are not complex conjugate to each other. We see that we have to evaluate the

expressions inside the parentheses in these two equations. Their difference would then

give (2.28). The problem is, of course, that these expressions do not converge.

In order to deal with this problem, we separate the sums to

∞
∑

n=1

(−1)n
√

2n vκ
2n

2n ± 1
=

∞
∑

n=1

(−1)n
vκ
2n√
2n

∓
∞
∑

n=1

(−1)n

2n ± 1

vκ
2n√
2n

. (2.32)

It was argued in [29] that the first term in the r.h.s, which is the divergent one, converges

as a distribution to

∞
∑

n=1

(−1)n
vκ
2n√
2n

= P 1

κ
. (2.33)

The evaluation of the two converging sums is straightforward, either by using directly the

generating function, as was done in [29], or by substituting the integral representation of

vκ
2n [20],

vκ
2n =

(−1)n
√

2n

2π
N (κ)

∫ ∞

−∞

du
sin(κu) tanh2n−1(u)

cosh2(u)
. (2.34)

Including (2.33) we get,

∞
∑

n=1

(−1)n
√

2n vκ
2n

2n − 1
=

π

2
P coth

(κπ

2

)

, (2.35)

∞
∑

n=1

(−1)n
√

2n vκ
2n

2n + 1
=

π

2
P 1

sinh
(

κπ
2

) . (2.36)

Thus the final result is,

δ1Lg
0 = δ1Lm

0 =
1

2
p2
0 − p0

π

2

∫ ∞

−∞

dκ tanh
(κπ

4

) aκ
√

N (κ)
, (2.37)

and the additional ghost terms are,

δ2Lg
0 = − 3

2
q0 +

3π

2

∫ ∞

−∞

dκP coth
(κπ

2

) aκ
√

N (κ)
, (2.38)

δ2L† g
0 = − 3

2
q0 −

3π

2

∫ ∞

−∞

dκP 1

sinh
(

κπ
2

)

a
†
κ

√

N (κ)
. (2.39)
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3. Verifying the commutation relation

In this section, we evaluate the commutation relation (1.12). This can be considered as

a test to our choice of the principal part prescription in section 2. We start with the

zero-momentum case in 3.1, then we evaluate the linear terms and the bosonized ghost

in 3.2.

3.1 The quadratic terms

The commutation relation, can be written more explicitly as,

[L0,bi-lin,L†
0,bi-lin] + [L0,quad,L†

0,quad] =L0,bi-lin + L†
0,bi-lin , (3.1)

[L0,bi-lin,L†
0,quad] =L†

0,quad , (3.2)

and the conjugate of the last equation. We start with,

[L0,quad,L†
0,quad] =

∫ ∞

0
dκdκ′

κπ
2

κ′π
2

sinh
(

κπ
2

)

sinh
(

κ′π
2

)(aκa
†
κ′ + a

†
−κ′a−κ)δ(κ − κ′) . (3.3)

We see that normal ordering this expression brings an infinite factor of the form of an

integral over δ(0). This is not much of a surprise, since we are not working here with the

full, c = 0 theory, but rather with a c = 1 one-dimensional matter sector. We deal with

this infinite constant later. Ignoring the constant term, we write

[L0,quad,L†
0,quad] =

∫ ∞

−∞

dκ

(

κπ
2

)2

sinh2
(

κπ
2

)a†κaκ . (3.4)

Next we calculate,

[L0,bi-lin,L†
0,bi-lin] =

∫ ∞

−∞

dκdκ′dκ1dκ′
1

(κπ

4
coth

(κπ

2

)

δ(κ − κ′) +
κ + κ′

2
δ′(κ − κ′)

)

·

·
(κ1π

4
coth

(κ1π

2

)

δ(κ1 − κ′
1) +

κ1 + κ′
1

2
δ′(κ1 − κ′

1)
)

(

a†κaκ1
δ(κ′ − κ′

1) − a
†

κ′
1

aκ′δ(κ − κ1)
)

=

∫ ∞

−∞

dκ
κπ

4

sinh(κπ) − κπ

sinh2
(

κπ
2

) a†κaκ . (3.5)

In order to get to the result, we had to exchange the names of the indices κ ↔ κ′
1, κ′ ↔ κ1

for the expression multiplying the last delta function, evaluate the integral over κ′
1 and use

the identity,

δ(n)(x)xk =

{

n!(−1)k

(n−k)! δ(n−k)(x) k ≤ n

0 k > n
. (3.6)

It is immediate that (2.20) is indeed the sum of (3.4) and (3.5).

Finally, we have to verify (3.2),

[L0,bi-lin,L†
0,quad] = π

∫ ∞

−∞

dκdκ′
κπ
4 coth

(

κπ
2

)

δ(κ − κ′) + κ+κ′

2 δ′(κ − κ′)

N (κ′)
a†κa

†
−κ′ . (3.7)
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Now, we use the invariance of the creation operators under κ ↔ −κ′, to write the second

summand in a symmetric form,

π

2

∫ ∞

−∞

dκdκ′ κ + κ′

N (κ′)
δ′(κ − κ′)a†κa

†
−κ′ =

π

4

∫ ∞

−∞

dκdκ′(κ + κ′)δ′(κ − κ′)
( 1

N (κ′)
− 1

N (κ)

)

a†κa
†
−κ′ . (3.8)

Expanding this expression in κ − κ′ and using once again the identity (3.6), brings (3.7)

exactly into (2.17).

3.2 The linear terms

The additional, momentum-dependent terms should obey some relations in order that the

algebra (1.12) would still hold. In the matter sector2 the relations are,

[δ1L0,L†
0] = δ1L0 −

1

2
p2
0 , (3.9)

[δ1L0, δ1L†
0] = p2

0 . (3.10)

Since all the expressions involved are regular, it is clear that the relations would hold and

indeed they do, as can be seen from a straightforward calculation. In the ghost sector

the coefficient functions are singular around κ = 0 and the integrals are not well defined.

This should have also been expected, since the ghost contribution should cancel the infinite

constant from the matter sector.

In the ghost sector some new relations emerge. Most of them are trivial like the

relations that involve only δ1. These are,

[δ1L0, δ2L†
0] + [δ2L0, δ1L†

0] = −3q0 , (3.11)

[δ2L0,L†
0,quad] + [L0,bi-lin, δ2L†

0] = δ2L†
0 +

3

2
q0 , (3.12)

[δ2L0,L†
0,bi-lin] + [L0,quad, δ2L†

0] = δ2L0 +
3

2
q0 . (3.13)

The only non-trivial relation is the one related to the normalization, which we examine

next,

[δ2L0, δ2L†
0] = −

(3π

2

)2
∫ ∞

−∞

dκP coth
(

κπ
2

)

sinh
(

κπ
2

)

N (κ)
. (3.14)

This expression diverges, since it has a double pole in the origin. However, in [29] a

prescription was given for dealing with this type of divergences in the continuous basis.

According to this prescription, we should interpret the following integral in level truncation

as,

∫ ∞

−∞

dκP 2

κ2N (κ)
≈

`/2
∑

n=1

1

n
, (3.15)

2These relations are also part of the ghost sector relations, where we should write q0 instead of p0. We

omit the superscripts m,g in the following expressions.
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where ` is the oscillator level. Subtracting this expression inside the integral leaves us with

a converging integral,

−
(3π

2

)2
∫ ∞

−∞

dκ

(

coth
(

κπ
2

)

sinh
(

κπ
2

) − 2

π2

2

κ2

)

1

N (κ)
= −9

2

(

2 log(2) − 1
)

. (3.16)

Thus we write,

[δ2L0, δ2L†
0] ≈ −9

2





`/2
∑

n=1

1

n
+ 2 log(2) − 1



 . (3.17)

We now want to add the contribution to the normalization coming from (3.3) of all 27

modes. Again, we have to regularize this expression, using the spectral density (2.5),

27[L0,quad,L†
0,quad] ≈ 27

∫ ∞

0
dκρ(κ)

(

κπ
2

)2

sinh2
(

κπ
2

) =
9

2





`/2
∑

n=1

1

n
+ 2 log(2) − 1

6



 . (3.18)

We can now add all the contributions to the central term in the commutator of the full

matter+ghost operators. Recall that the terms proportional to the momentum (and ghost

number) already canceled. Thus,

[L0,full,L†
0,full] = L0,full + L†

0,full +
15

4
. (3.19)

There is a discrepancy between this result and (1.12) which comes from using different

regularization schemes. Schnabl did the calculation in the universal basis with c = 0

Virasoro operators, while here we use the continuous basis regularization, which relies on

oscillator level truncation. There are two potential problems here. The first is the use of

c 6= 0 Virasoro algebra due to the separation to matter and ghost parts and the second is

the use of oscillator level-truncation calculations, which can lead to anomalous results [25].

In fact, already the matter-ghost factorization of L0,L†
0 may lead to problems, as was

noticed by Schnabl already in [15]. There, these operators (called there B,B†) were used

to produce the “unbalanced wedge states” and it was demonstrated that the inclusion of

these states in the algebra may lead to normalization inconsistencies.

We evaluated this constant also in the discrete basis. The contribution of the linear

part (3.17) is reproduced analytically. This also trivially matches the contribution that

we get in a Virasoro-based level truncation, since oscillators at level ` emerge only from

δ2L` (2.29). The contribution of the quadratic part (3.18) was evaluated numerically. We

found a finite part, which is half the one of (3.18) to a very high precision. Thus, the direct

use of oscillator level-truncation almost produces the results of the continuous basis. We

believe that the source of the discrepancy here is that the integrand of (3.3) contains a

delta-function, which should also be interpreted as ρ(κ). This effectively gives a product

of two such factors. However, we do not know how to treat such a product. What is really

needed is a better regularization ρ(κ, κ′) (2.5) that would allow such manipulations. A

better regularization would presumably result in a vanishing constant. We currently study

these issues.
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4. Wedge states

In this section we demonstrate that our expressions for L0,L†
0 generate the wedge states via

both relation (1.5) and (1.6). This is another verification of the principal part prescription

used in deriving these expressions. Since we are working with a c = 1 system, there are

infinite normalization factors, which we ignore.

4.1 Relating the L†
0 and squeezed state representations

The operator L†
0 contains terms of the form a†a† and a†a. We can use techniques similar

to those of the appendix of [30] to write,

e
1

2
a†S̃a†+a†V a = e

1

2
a†Sa†

ea†V a , (4.1)

where S̃, S, V are matrices and get the relation,

S =
e2V − 1

2V
S̃ . (4.2)

This expression is defined as a power series in V . Thus, it is well defined even for a

non-invertible V and since the Taylor expansion has a linear term, it has a unique inverse.

We want to rewrite the equality between (1.5) and (1.7) as a first order differential

equation in n. Since both expression trivially match for the initial condition n = 2, this

equation is equivalent to the original equality, when we use the known n dependence in

both expressions (1.5), (1.7). To this end we derive both equations with respect to n,

−n

∫ ∞

0
dκ∂nTn(κ)a†κa

†
−κ |n〉 =

∫ ∞

−∞

dκdκ′
(

a†κa
†
κ′S̃(κ, κ′) + a†κaκ′V (κ, κ′)

)

|n〉 . (4.3)

We can now plug (1.7) into the r.h.s of this equation to get an expression with only creation

operators,

−n

∫ ∞

0
dκ∂nTn(κ)a†κa

†
−κ |n〉 =

∫ ∞

−∞

dκdκ′
(

a†κa
†
κ′S̃(κ, κ′) + a†κa

†
−κ′V (κ, κ′)Tn(κ)

)

|n〉 .

(4.4)

Now, the coefficients of all sets of creation operators should vanish separately.

Instead of just plugging our solution into (4.4), we consider an ansatz of the form of

the solution that we found (1.11) and show that these equations are the only solution for

the ansatz. Namely we consider,

S̃(κ, κ′) = S̃(κ)δ(κ − κ′) , (4.5)

V (κ, κ′) = V1(κ)δ(κ + κ′) + V2(κ + κ′)δ′(κ + κ′) . (4.6)

This can be considered as an independent derivation for the expression of L0.

Integrating the δ′ term gives,

∫ ∞

−∞

dκdκ′V2(κ + κ′)δ′(κ + κ′)Tn(κ)a†κa
†
κ′ =

– 12 –
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−
∫ ∞

0
dκ

(

2a†κa
†
−κ

(

V2(2κ)∂κTn(κ) + Tn(κ)V ′
2(2κ)

)

+ Tn(κ)V2(2κ)∂κ(a†κa
†
−κ)

)

= (4.7)

−
∫ ∞

0
dκa†κa

†
−κV2(2κ)∂κTn(κ) ,

where in the last equality we had to integrate by part and thus, in order to ensure that

the boundary terms vanish, we had to assume that V2(κ) times the eigenvalues of a
†
κa

†
−κ is

not too singular as κ → 0,∞ and that 2 ≤ n. We can now write (4.4) as an equation that

should hold for all κ > 0,

−n∂nTn(κ) = S̃(κ) + 2V1(κ)Tn(κ) − V2(2κ)∂κTn(κ) . (4.8)

All that is left to do now is to plug in the explicit expression for Tn(κ) (1.8) and expand (4.8)

in a series with respect to n. Equating the first three non-trivial coefficients, which are

functions of κ gives a unique choice for S̃(κ), V1,2(κ) that exactly matches (2.17), (2.19).

Plugging these expressions into the full equation (4.8), proves that it is indeed a solution.

4.2 Relating the L0 + L†
0 and squeezed state representations

The algebra (1.12) was used in [1] in order to express the wedge states using the sum

L0 +L†
0 (1.6). This expression seems very similar to (1.5). However, since the sum L0 +L†

0

is defined using matrices which are block diagonal in the κ basis, it is much easier to directly

derive (1.7) from (1.6), since here there is no problem to use the methods of [30] for the

evaluation.

We write L0 + L†
0 in a block diagonal form as,

L0 + L†
0 = A

(

a†

(

0 1

1 0

)

a† + a

(

0 1

1 0

)

a

)

+ C a†

(

1 0

0 1

)

a (4.9)

where

A =
κπ

4 sinh
(

κπ
2

) , C =
κπ

2
coth

(κπ

2

)

. (4.10)

It is clear that we can express,

exp
(

t(L0 + L†
0)

)

= (4.11)

exp
(

η(t)
)

exp

(

α(t) a†

(

0 1

1 0

)

a†

)

exp

(

γ(t) a†

(

1 0

0 1

)

a

)

exp

(

α(t) a

(

0 1

1 0

)

a

)

.

Since all the matrices involved are commutative, we can use the appendix of [30] to imme-

diately write differential equations for the unknown functions α(t), γ(t), η(t),

α̇ = A + 2Cα + 4Aα2

γ̇ = C + 4αA

α̇ = e2γA

η̇ = 2Tr(Aα) ,

(4.12)
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with the initial conditions,

α(0) = γ(0) = η(0) = 0 . (4.13)

It may seem that we have too many equations, but given the initial conditions, the first

two imply the third. We also do not calculate the normalization η, since we check here

only the matter sector. Substituting the explicit expressions (4.10) into the equation, the

solution is immediate,

α(t) =
1

2

sinh
(

κπ
2 t

)

sinh
(

κπ
2 (1 − t)

) , γ(t) = log

(

sinh
(

κπ
2

)

sinh
(

κπ
2 (1 − t)

)

)

. (4.14)

Substituting t = −n−2
2 we get

α

(

−n − 2

2

)

=
Tn

2
, (4.15)

where Tn is defined in (1.8). Thus, (1.7) is reproduced, as we wanted to prove.

5. Conclusions

We demonstrated in this paper that the operators L0,L†
0 have a simple form for scalar

fields in the continuous basis. The expressions we found could be used in the study of

background dependent applications related to Schnabl’s solution, but not only. Schnabl’s

choice of coordinates and gauge can also simplify calculations around the perturbative

vacuum, where again our expressions could be put to use.

It was natural to generalize our results to the bosonized ghost sector. It is usually the

case that the bosonized ghosts are easier to handle in string field theory. Still, it would

be interesting to generalize our results and write Lg
0,L

† g
0 using the b, c ghosts, especially

considering that Schnabl’s solution explicitly relies on them.

Our construction suffers from regularization subtleties. It seems to us that the source

of the problems is that the oscillator level truncation that is used for the regularization of

the continuous basis is inconsistent. Therefore, some calculations, such as the evaluation

of wedge states normalizations cannot be trusted. Thus, we find the construction of a

consistent regularization scheme for the continuous basis highly desirable.
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